

DEPFET Sensor R&D and Prototyping

- Status -

Ladislav Andricek

Most of the design done by Rainer Richter, MPI HLL

First run PXD6: 2009

- -: first DEPFET run on SOI wafers!!
 - \rightarrow 50 μm thin DEPFET arrays
- -: 6 SOI and 2 std. Hi-Res Wafer
- -: top wafer (front side) technology like PXD5
- -: new: thinning and back side processing
- -: Aim: find optimal design
 - optimize technology and yield
 - provide devices for all-silicon module
 End Spring 2010

SuperBelle Production PXD7: Start 2011

- -: With improved rad hard technology
- -: 20 Wafer? (depends on yield of PXD6)

End Spring 2012

wafer floor plan for PXD6

-: Many design variations – pixel size, geometry of the cell, matrix arrangement...

-: Wafer floor plan and size of the matrices are frozen, detailed design not yet

- deadline is middle of May, still some optimization possible (and ongoing..)
- discussion and selection process at dedicated DEPFET Workshop 2-6 May
- most important designs will be placed at the DEPFET Wiki for discussion prior to that (www.depfet.org).
- -: four half sized first layer modules in the center (\approx 5cm² sensitive region) with variable pixel size along Z \rightarrow all-silicon ladder with bump bonded ASICs
- -: many (\approx 60) smaller wire-bondable matrices for laser/beam tests, irradiations etc. ..
- -: 8 fully bump-bondable matrices for interconnection tests
- -: ILC sensors many test structures (Diodes, MOS-Caps, MOSFETs ..)

halbleiterla

DEPFET Pixel Cell for SuperBelle

DEPFETs from ILC to SuperKEKB:

- -: the principle is of course the same
- -: technology to a large extent also
- -: but the cell size is much larger!!!

 $24x24\mu m^2 \rightarrow 50x75\mu m^2$

- \rightarrow keep W and L small (maintain clear and g_q)
- ightarrow re-design drain and source region to keep

charge collection time short (<<10µs)

2nd Open Meeting of the SuperKEKB Collaboration, KEK, March 2009

- -: add drift structures to guide signal charge into the internal gate
- -: 220 μm pixel (in z) possible with two drift regions
 - → drift time \approx 250 ns for 90% of the charge

for the most extreme case

🚽 Yarhowed Layout Labour, 19266, Sil XARL, 128all, CC, DIL, G. J. C., FC, Jaynul «Querchir» 📃 🗖 🗙														
×	1993	Y: 200	90	(F) 5	elect: 0	DRC	: OFF	30b		100	(hst:		2md:	4
Tools	Design	Wextow	Oreafe	Edit V	erify Co	nnectivity	Options	Routing	Migrate					Help
۲														
A														
Cak					a.					- D				
Q														
Q							÷.	- 2 -						
m		4												
5		4						2						
									- 2					
						-								
1												-	-	
0													A COLOR	
-														
1915														
30	-	1					-				and a			01
л	1			i C		1			and t		1		3000	
0			-				1	i and	.(ك	Cite -		-	9	
26			101				T.S.	10.0			100			E C
[shef]	1000		1000				1		10 10		892 T		S. Par	
Q.						J.	1944	2				3 8		
1	NOUSE L	access:	inglese	lectra		*	Lettino	usePop@y	0		8 hit	comite lati	veScale(h	sDetCurrentWin

-: Preparation of Wafers for SOI production finished

- oxidation, alignment marks etching, implantation, cleaning etc. \rightarrow Done!

-: Send out wafers to Tracit for Wafer bonding and top layer thinning next week confirmed delivery date: **22.05.09**

The Radiation Tolerance Issue

- -: Threshold voltage shift depends on biasing condition during irradiation up to 8Mrad
- -: For negative Vgate during irrad. worse behavior
- -: Annealing at RT (10 days) $\rightarrow \Delta Vt \approx 16.5 + /-0.8 V$
- -: noise and signal okay even after 8Mrad!

only Gate shown here; Clear Gate behaves similar!

- -: PXD5, Wafer 90, 8x12 mini-matrix, 32x24 µm²
- -: irradiation with X-rays photons in Karlsruhe, ~185krad/h, Emax=60keV
- -: entire matrix biased in "off" during irradiation, periodically cleared
- a/ "gate off" voltage and common clear gate voltage was stepwise adapted to radiation induced threshold voltage shift
- **b/** "gate off" voltage kept at 0V all the time

2nd Open Meeting of the SuperKEKB Collaboration, KEK, March 2009

-: PXD6 Production has started and is on schedule!

- -: Detailed design is being finalized, geometry will be frozen beginning/middle of May
- -: New irradiation results of MOS-Caps with improved gate dielectrics show very encouraging results. This technology will be further optimized in a parallel production run and integrated in the DEPFET technology for the final SuperBelle sensor.

DEPFET Workshop at Ringberg Castle, 3-6 May 2009

http://indico.mppmu.mpg.de/indico/conferenceDisplay.py?confId=466

halbleiterla

Reasons II - Field Dependence, MOS-C irradiations

But "channel" close to the Source is not completely floating!!

- \rightarrow adaption of Gate-off voltage to negative values during irradiation increases the field there
- \rightarrow Gate "OFF" close to the Source is then in Region b.
- → larger threshold voltage shift, if one tries to keep (V_{Gate-On}-V_{Gate-Off}) constant in the experiment

halbleiterlaboi